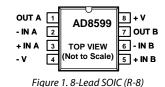


Dual Ultralow Distortion, Ultralow Noise Op Amp


AD8599

Preliminary Technical Data

FEATURES

Low noise: 1 nV/ \sqrt{Hz} at 1kHz Low distortion: -120 dB THD @ 20 kHz < 50 nV p-p input noise, 0.1 Hz to 10 Hz Slew rate: 15 V/ μ s Wide bandwidth: 10 MHz Supply current: 5 mA typ Low Offset Voltage: < 100 μ V max CMRR: 120 dB Unity-Gain Stable ±5V to ±15V Operation

PIN CONFIGURATIONS

APPLICATIONS

Professional audio preamplifiers ATE / Precision Testers Imaging systems Medical / Physiological measurements Precision detectors / instruments Precision Data Conversion

GENERAL DESCRIPTION

The AD8599 is a dual, very low noise, low distortion operational amplifier ideal for use as a preamplifier. The low noise of $1 \text{nV}/\sqrt{\text{Hz}}$ and low harmonic distortion of -120 dB (or better) at audio bandwidths give the AD8599 the wide dynamic range necessary for preamps in audio, medical, and instrumentation applications. The AD8599's excellent slew rate

of 15 V/ μ s and 10 MHz gain bandwidth make it highly suitable for low frequency medical applications. The low distortion and settling time of the AD8599 make it ideas for buffering of high resolution data converters.

Rev. PrA

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

SPECIFICATIONS

 V_{DD} = ±15 V and ±5 V, V_{CM} =0V, T_{A} = +25°C, unless otherwise noted

Table 1.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos				100	μV
		-40°C < T _A < +85°C			150	μV
		-40°C < T _A < +125°C			150	μV
Offset Voltage Drift	$\Delta V_{os}/\Delta T$	$-40^{\circ}C < T_A < +85^{\circ}C$			1	μV/°C
		-40°C < T _A < +125°C			1.5	μV/°C
Input Bias Current	IB				100	nA
		$-40^{\circ}C < T_A < +85^{\circ}C$			300	nA
		-40°C < T _A < +125°C			300	nA
Input Offset Current	los				tbd	
		-40°C < T _A < +85°C			tbd	
		-40°C < T _A < +125°C			tbd	
Input Voltage Range	Vсм	$V_{DD} = \pm 15V$	±11V			V
		$V_{DD} = \pm 5V$	±2.5			1
Common-Mode Rejection Ratio	CMRR	-11V < V _{CM} < +11V	> 100	tbd		dB
Large Signal Voltage Gain	Avo	$R_L = 2 k\Omega$, $V_O = -10V V$ to $+10 V$			tbd	V/mV
		-40°C < T _A < +85°C				
		-40°C < T _A < +125°C				
Input Capacitance	CDIFF					pF
	Ссм					pF
OUTPUT CHARACTERISTICS						
Output Voltage High	Vон	I _{OUT} = 1 mA				V
		I _{OUT} = 10 mA				V
		-40°C < T _A < +85°C				V
		-40°C < T _A < +125°C				
Output Voltage Low	Vol	louτ = 1 mA				mV
		Ι _{ουτ} = 10 mA				mV
		-40°C < T _A < +85°C				mV
		-40°C < T _A < +125°C				
Output Current	Іоит	Conditions				mA
Closed-Loop Output Impedance	Zout	At 1MHz, A _V = +1				Ω
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_{DD} = \pm 15V \text{ to } \pm 9V$	120			dB
		$-40^{\circ}C < T_A < +85^{\circ}C$	120			
		$-40^{\circ}C < T_{A} < +125^{\circ}C$	120			
Supply Current per Amplifier	Isy		120	5		mA
DYNAMIC PERFORMANCE	1					1
Slew Rate	SR	$R_L = 1 \ k\Omega$	10	15		V/µs
Settling Time	ts	To 0.01%		tbd		μs
Gain Bandwidth Product	GBP			10		MHz

Preliminary Te	chnical Data		AD8599
Phase Margin	фм	50	Degrees

Parameter	Symbol	Conditions	Min Typ	Max	Unit
NOISE PERFORMANCE					
Peak-to-Peak Noise	e _n p-p	0.1 Hz to 10 Hz	50		μV
Voltage Noise Density	en	f = 1 kHz	1		nV/√Hz
		f = 10 kHz	tbd		nV/√H:
Current Noise		f = 1 kHz, 20 Ω	< 2pA		pA/√H
Total harmonic distortion + Noise	THD+N	$ G=1, R_L \ge 1k \ \Omega, f=250 \ kHz, V_{RMS}=3 \ V, \\ \pm 15V $		-90	dB
		G=1, R _L \geq 1k Ω , f=20 kHz, V _{RMS} = 3 V, ±15		-110	dB
Channel Separation	CS	f = 10 kHz?	-120		dB
		f = 100 kHz?	-120		dB

ABSOLUTE MAXIMUM RATINGS

Table 2.

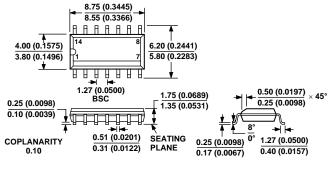
Parameter	Rating
Supply Voltage	6V
Input Voltage	GND to VDD
Differential Input Voltage	±3V
Output Short-Circuit to GND	Indefinite
Storage Temperature Range	-65°C to +150°C
Operating Temperature Range	
	-40°C to +125°C
Lead Temperature Range (Soldering 60 sec)	300°C
Junction Temperature	150°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

 θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 3. Thermal Resistance


Package Type	θ _{JA}	θ」	Unit
14-Lead SOIC (R)	120	36	°C/W

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-012-AB CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 2. 14-Lead Standard Small Outline Package [SOIC] Narrow Body (R-14) Dimensions shown in millimeters and (inches)

ORDERING GUIDE – DEVICE IN DEVELOPMENT

Model	Temperature Range	Package Description	Package Option

 \circledcirc 2006 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.

www.analog.com